
CHAPTER 3

SOLVING SIMPLE PROBLEMS WITH BASIC
END, PRINT, LET, Constants, Variables,

and Arithmetic Operations

WRITING SIMPLE BASIC PROGRAMS

Learning to solve simple problems in BASIC is somewhat like learning
to write and communicate in a foreign language, with one exception—BASIC
is much easier to learn. By comparison, in the average pocket dictionary there
are approximately 50,000 words, but there are less than 50 keywords in BASIC.

You could probably learn all these keywords in one day; however, it takes
longer than one day to become a proficient programmer in the BASIC
language. As with any language, knowing only the grammar or mechanics
of the language is not sufficient. You also must know how to use the language
to instruct the computer to solve problems.

As discussed in Chapter 1, the first step in writing a program is problem
definition and understanding. Whether it is an elaborate application or just
a simple “one time” program you wish to write, you first must understand
the problem, then decide how you are going to solve it. Once this is done,
you start writing the program. Challenging as it is, this can be fun; although
at times it can be very frustrating. As you progress through the course, make
note of how each keyword is used to instruct the computer to produce the
desired result;

In this chapter, we will discuss three statements that can be used in writing
simple BASIC programs and give examples of programs. The three keywords
used to construct these statements are END, PRINT, and LET.

END Statement

Every program requires an END statement, so we’ll start with it and its
functions. The END statement has two functions—to indicate to the
compiler (interpreter) that there are no more BASIC statements for it to
translate and to terminate execution of the program. Execution of an END
statement causes the computer to print a message which indicates program
execution is terminated and that the computer is ready for further
processing.

3-1

INTRODUCTION TO PROGRAMMING IN BASIC

The format of the END statement is:

statement keyword
number

Remember, the last statement in any BASIC program must be the single
keyword END. This means that the statement number must be the largest
statement number in the program. There is no additional information required
or allowed in the END statement.

PRINT Statement

The next area of consideration is printing and the uses of the PRINT state-
ment. BASIC is different from other high level programming languages in
that it has a predefine format for printed output. This format, referred to
as standard spacing, divides the print line into a specified number of print
zones or fields of a predefine length. The number and length of print zones
may vary with different computers. For the purpose of this text, we will use
16 spaces per print field. Additionally, packed spacing maybe achieved through
the use of punctuation in the PRINT statement.

The function of the PRINT statement is to instruct the computer to
output something, either on the terminal or the printer. It can be used in several
different ways. One way is to print the value of a single variable.

Example:

Printing the value of a single variable

This statement will cause the computer to print whatever value it has for
the variable A. The output will be the value of A only, the variable name
A will not be printed. Let’s assume the value of A in the PRINT statement
is 896. When the PRINT statement is executed, the output will be:

Note that only the value of variable A was printed, not the variable name.
Now let’s suppose you wanted to print the values of several variables. It

could be done this way:

Example:

Printing the values of three variables

3-2

Chapter 3—SOLVING SIMPLE PROBLEMS WITH BASIC

Assume the values of A, B, and C are 896, 754, and 969 respectively. The
output from the PRINT statement would look like this:

Whenever you wish to print several variables with one PRINT statement,
you must separate them with either commas or semicolons, as was done in
line number 10 of the example. The commas will give you standard spacing.
If semicolons had been used, we would have gotten packed spacing. More
on the use of the comma and semicolon will be discussed later in the chapter.

Printing the results of a computation is another use of the PRINT state-
ment. Let’s suppose we want to get the average of three scores: 82, 95, and
93. First we must define the problem: how to compute an average. You add
up the scores and divide by the number of scores. This problem can be solved
by using a PRINT statement like this:

Example:

Print the results of a computation

We have used a simple mathematical formula in conjunction with the
PRINT statement to solve the problem. First the computer will add all the
scores, then it will divide by three and print the result. When this statement
is executed, the output will be:

This output is rather plain and meaningless to anyone other than the
person who wrote the program. There is another use of the PRINT statement
which will enhance the output from the previous example, printing a message
using the PRINT statement. Any message to be printed must be enclosed in
quotation marks.

Example:

Printing a message

3-3

INTRODUCTION TO PROGRAMMING IN BASIC

The output from these PRINT statements would be:

You will notice the quotation marks around the message in line 10 causes
the message to be printed just as it appears in the program. Using the PRINT
statement in this manner adds clarity and meaning to the output.

Now let’s look at another combination of uses of the PRINT statement.
Suppose we wanted to print out the individual scores and the average of the
scores, with a blank line between them. The following example shows how ‘
this could be done:

Example:

Printing blank lines

Note that line 50 contains a blank PRINT statement. This will cause spacing
between lines of output. It can be used to provide clarity and improve
readability. When the program is executed, the output will look like this:

3-4

Chapter 3—SOLVING SIMPLE PROBLEMS WITH BASIC

As seen in this example the blank PRINT statement produced a
blank line between the individual scores and the average score. This feature
may work differently on some computers.

We could have written the previous example in
semicolons to separate messages and numbers.

a different manner—using

Example:

Printing messages and numbers on the same line,

The information enclosed in quotation marks will be printed exactly as
it appears in the program followed by the numeric data in line 10 and the
result of the computation in line 30.

The various uses of the PRINT statement have been presented. Let’s take
a closer look at the punctuation used in PRINT statements, and how it
affects the output. The two primary punctuation marks used in a PRINT state-
ment are the comma and semicolon.

COMMA.—When a comma is used as a separator in a PRINT statement,
standard spacing (16 spaces per field) is achieved. When numbers are printed,
the first space is reserved for a minus sign. A comma maybe used at the end
of a PRINT statement to allow the information in the following PRINT state-
ment to be printed on the same line. On some computers, when two commas
(,,) are used together they will produce a blank field in printed output.

Here are some examples of what commas do in a PRINT statement.

Example:

Using commas as separators

3-5

INTRODUCTION TO PROGRAMMING IN BASIC

The output from this example would look like this:

You will notice the output is spaced out into three print zones or fields.

Look at the following example and see what effect a comma at the end
of a PRINT statement has on the output.

Example:

Using commas at the end of PRINT statements

The output will look like this:

Here we have two PRINT statements but only one line of output. The
comma at the end of line 10 caused the output from line 20 to be printed
on the same line as the output from line 10 beginning in the next available
print zone.

Let’s see what will happen if we use two commas (,,) together in a PRINT
statement. (NOTE: This may not work on some computers.)

Example:

Using two commas together

The output will look like this:

3-6

Chapter 3—SOLVING SIMPLE PROBLEMS WITH BASIC

Here we have a blank field. The second data element started in the third
print zone or field instead of the second, because of the two commas used
together.

SEMICOLON.—NOW let’s examine the second punctuation mark used
in PRINT statements, the semicolon. When a semicolon is used in a PRINT
statement, messages are printed together without any spaces (packed
spacing). However, numeric data will be printed with two spaces between each
number, one space is reserved for the minus sign. Like the comma, a semicolon
used at the end of a PRINT statement causes the information in the next
PRINT statement to be printed on the same line. The following examples show
the effect a semicolon has on a PRINT statement.

Example:

Using semicolons as separators

As seen in this output, the semicolon used as a separator in a PRINT state-
ment causes packed spacing.

Example:

Using semicolons at the end of PRINT statements

As seen in the output from this example, the semicolons caused all the
printed output to come out on the same line with the message printed together
followed by the numeric data.

3-7

INTRODUCTION TO PROGRAMMING IN BASIC

Some important points to remember about the PRINT statement are:

It will print any message enclosed in quotation marks.

It will print any number or variable.

It will calculate and print the result of an expression.

A blank PRINT statement will cause a blank line in your output.

When a comma is used as a separator, normal spacing (16 spaces per
field) is achieved.

When a comma is used at the end of a PRINT statement, the data
in the next PRINT statement is continued on the same line beginning
in the next print zone.

When “ ” (quote, blank, quote) is used as a print field the computer
will skip to the next print field. You are actually telling the
computer to print a blank field. On some computers, two commas (,,)
together will produce the same results.

When a semicolon is used as a separator, packed spacing is
achieved.

When a semicolon is used at the end of a PRINT statement.
the information contained in the next PRINT statement is continued
on the same line.

PRINT statements can become awkward when many computations are
to be done or the results of computations are to be used in other calculations.
The results of computations done in a PRINT statement are not stored in
the computer’s memory; therefore, away is needed to store data or the results
of computations for later use. The LET statement will do this, since the results
of computations done in a LET statement are stored in the computer’s memory.

LET Statement

One of the more useful BASIC language keywords is LET. It is an instruc-
tion to the computer to either assign a specified value to a variable name,
or to do certain computations and then assign the result to a variable name.
The LET statement is not a statement of algebraic equality; rather, it is a
definition that assigns a value or a number to a variable.

The LET statement can be used to assign a constant value to a variable
name, a variable to a variable name, or the result of an expression to a variable
name. Therefore, the LET statement is often referred to as an assignment
statement.

For example:

Assigning a constant value to a variable name

3-8

Chapter 3—SOLVING SIMPLE PROBLEMS WITH BASIC

In this example the value 212 is assigned to the variable name A
and stored in memory with the location name, A. The equal sign should be
read as be replaced by or more precisely be assigned the value of. This does
not represent algebraic equality.

Let’s examine a program with a LET statement that assigns a constant
value to a variable name. Assume we wanted to find the area of three circles,
each with a radius of 5, 6, and 7 inches respectively. We know that pi (3. 1416)
will be used in each computation; therefore, if we assign the constant value
of 3.1416 to a variable name (P), we can use the variable name in each com-
putation rather than writing 3.1416 three times. This eliminates repetitive
coding. The program could be written this way:

Example:

Assigning a constant value to a variable name

If a value is to be used several times in a program, it can be assigned to
a variable name and stored in the computer’s memory. When that value is
to be used, you can reference it by using the variable name. In the previous
example that is what we did, we assigned 3.1416 the variable name of P and
each time we wanted to use it, we referenced P rather than write 3.1416 each
time.

Since an expression is really nothing more than a value represented by
algebraic symbols, the LET statement can also be used to assign a variable
name the value of an expression as in a formula or equation.

Using the previous example of the circles, let’s see how this works.

Example:

Assigning the value of an expression to a variable name

3-9

INTRODUCTION TO PROGRAMMING IN BASIC

In this example, the expressions on the right side of the equal sign were
calculated and the results assigned to the variable names Al, A2, and A3.
Then in line 50 when we wanted to print the answers we referenced the variable
names instead of having to recode the expressions.

Three important points to remember about the LET statement are:

It assigns a value to a variable name.

The value may be expressed as a constant, another variable
or an expression.

The value is stored in memory and may be referenced by its
variable name.

ARITHMETIC EXPRESSIONS

Arithmetic expressions are composed of a combination of constants,
variables, operation symbols, and functions. An expression may be very
simple or quite complex, but it will result in a single value. Whether an
expression is simple or complex, the calculations must be performed in a
specific order. To ensure the computer will correctly evaluate and calculate
arithmetic expressions, you have to learn to code them using the rules of
BASIC. In order to use arithmetic expressions efficiently, you must be able
to evaluate and convert conventional mathematical expressions into proper
BASIC expressions.

Arithmetic Operators

Unlike algebra, each arithmetic operator in a BASIC expression must be
specified by the inclusion of the appropriate operator symbol. The symbols
with their operation are as follows:

Operator
Symbol Operation

* * Exponentiation
(an up arrow ? is used on
some computers)

* Multiplication

/ Division

+ Addition

— Subtraction

The symbols associated with each operator are standard in the BASIC
language. In mathematics it’s all right to write AB to mean multiply A times
B. In BASIC you must write A*B since default conditions do not exist. This
means if you forget one of the operator symbols, the compiler will not insert
it for you; but rather will give you an error message.

3-10

Chapter 3—SOLVING SIMPLE PROBLEMS WITH BASIC

Precedence Rule

Many expressions are complex and may have two or more operators;
therefore, the computer must have specific rules of precedence to define the
order of execution. The computer will perform exponentiation first, then
multiplication or division, then addition or subtraction. That is, exponentia-
tion has precedence over addition and subtraction. The following list shows
the operator symbols, operation, and their precedence of execution.

Operator
Symbol Operation Precedence

** Exponentiation 1

* Multiplication 2

/ Division 2

+ Addition 3

— Subtraction 3

If two or more operators of the same precedence appear in an expression,
then the order of evaluation is from left to right.

Example:

Given: A = 10, B = 6, and C = 7

A and B will be added giving 16, then C will be subtracted giving 9.

B will be subtracted from A giving 4, then C will be added giving 11.

Parentheses Rule

There are cases where the precedence rule may cause a problem. For
example:

The BASIC expression LET Y = A/B+ C would produce undesired results,
because A would be divided by B and the result added to C. The solution
to this problem is in the use of parentheses. If we let parentheses override
the order of precedence (but maintain the
parentheses), the result will be satisfactory.
example using parentheses.

3-11

order of precedence within the
Now let’s examine the previous

INTRODUCTION TO PROGRAMMING IN BASIC

Example:

Using parentheses

With the parentheses, B is added to C and the sum of this operation is
divided into A, giving the correct result.

Sometimes more than one set of parentheses may be needed to tell the
BASIC language in what order to execute the arithmetic operations.

Example:

Parentheses inside parentheses

The BASIC expression to accomplish this would be:

For this expression to give us the correct results, A and B must be added
first, then the sum divided by C, and finally that result is squared. When
parentheses within parentheses are used, the innermost parentheses will be
evaluated first. Addition has a lower precedence than either division or
exponentiation; therefore, A + B must be in the inner parentheses. Division
has a lower precedence than exponentiation, so (A+B)/C also must be enclosed
in parentheses, ((A+B)/C), to ensure it is performed next.

The important thing to remember is the parentheses maybe used to over-
ride the normal order of precedence. The parentheses rule says:

. Computations inside parentheses are performed first.

. If there are parentheses inside parentheses, the operations inside
the inner pair are performed first.

CONSTANTS AND VARIABLES

Throughout Chapters 2 and 3 we have been using constants and variables
to refer to numeric values. Like everything else in a programming language,
there are rules to be learned about the coding and use of both constants and
variables.

In the BASIC language, we have two ways to refer to a numeric value:
first, by a numeric-constant representing the value, and second, by an arbitrary
name, a numeric-variable name, representing the value.

3-12

Chapter 3—SOLVING SIMPLE PROBLEMS WITH BASIC

Numeric-constants

A numeric-constant is a decimal number, whose value does not change.
It may be a whole number or have a decimal or fractional part. If it has a
fractional part it must be expressed as a decimal number such as 3.5 rather
than 3 1/2. If the number gets too large, the system software will convert
the number to scientific notation. As described in Chapter 2, this is simply
a decimal fraction multiplied by a positive or negative power of ten.

Numeric-variable Name

A numeric-variable name is an arbitrary name that you select, and you
and the computer system use to refer to some location in memory. The value
contained in that location may change or vary during execution of a program.

Example:

C = 5/9(F – 32) is the formula for converting temperature in Fahrenheit
to Celsius (centigrade). In this equation 5, 9, and 32 are all constants; that
is, they never change. F is the variable name for temperature in Fahrenheit;
its value varies as the temperature goes up and down. C is the variable name
for the temperature in degrees Celsius; it refers to the location in memory
where the solution to the computation is stored, and its value varies as the
value of F varies according to the formula.

A numeric-variable name maybe any single letter of the English alphabet
(A to Z), or a single letter followed by any single decimal digit (0 through
9). Table 3-1 shows examples of valid and invalid variable names.

Table 3-1.—Numeric-variable Names

String-constants and String-variables

Not all constants and variables are numeric. They may be a series or string
of characters such as name (“JOHN DOE”) or address (“206 VILLAGE
GREEN CIRCLE”). They may be composed of any combination of letters,
digits, and special characters and are enclosed in quotation marks. Generally

3-13

INTRODUCTION TO PROGRAMMING IN BASIC

they are called character strings and may be either a string-constant or a string-
variable. In BASIC, variable names for string-variables are any single letter
(A-Z) followed by a dollar sign ($).

For example:

String-constant

String-variable

The important things to remember about constants and variables are:

Numeric-constants are whole or decimal numbers that do not
change throughout a program.

Variables, referenced by variable names, may represent numeric values
or character strings.

Variables are used when values may change during execution of
a program.

Variable names for numeric values may be a single alphabetic character
(A-Z), or one alphabetic character followed by a single numeric digit
(0-9).

Variable names for character strings are a single alphabetic character
(A-Z) followed by a dollar sign ($).

String constants are character strings that do not change throughout
a program.

SUMMARY

Simple problems can be solved with BASIC by using only two or three
instructions. These are the END, PRINT and LET statements. To use these
effectively, you must know how they work and what rules must be followed
in using them.

The END statement, which must be the last statement in every BASIC
program, has two functions. It indicates to the compiler that there are no
more BASIC statements for it to translate and it terminates execution of the
program.

The PRINT statement is used to instruct the computer to output something
either on the terminal or the printer. The standard print line in BASIC is divided
into print zones or fields of 16 spaces each.

The two punctuation marks used in PRINT statements are the comma
and semicolon. A comma used as a separator in a PRINT statement causes
standard spacing and a semicolon causes packed spacing.

3-14

Chapter 3—SOLVING SIMPLE PROBLEMS WITH BASIC

Information enclosed in quotation marks in a PRINT statement will be
printed exactly as it appears in the program.

The LET statement can be used to assign a constant value to a variable
name, a variable to a variable name, or the results of an expression to a variable
name. The equal sign in a LET statement does not indicate algebraic
equality, rather it means be assigned the value of. The value assigned by a
LET statement is stored in the computer’s memory; therefore, it can be
referenced by its variable name.

Both the PRINT and LET statements may contain expressions with
arithmetic operations. These arithmetic operations must be specified by the
appropriate operation symbol. Should you forget to include the symbol, the
computer will not insert it for you, but will give you an error message.
Arithmetic operations within an expression are executed in a prescribed order
of precedence: exponentiation first; multiplication and division next;
and addition and subtraction last. Parentheses are used to alter the normal
order of precedence. Operations inside parentheses are performed first. If there
are parentheses inside parentheses, the operations inside the inner pair are
performed first.

Constants and variables are used to refer to numeric values or character
strings. A constant is a whole or decimal number or character string whose
value does not change. A variable name is an arbitrary name you select and
you and the computer use to refer to a value stored in the computer’s memory.
This value may vary during execution of the program, but can contain only
one value at a time.

3-15

INTRODUCTION TO PROGRAMMING IN BASIC

3-16

CHAPTER 3

EXERCISES

1.

2.

3.

4.

You have been jogging regularly for six months and you want to know
how many miles you have jogged in the six month period. Write a program
that will total your miles jogged and print a heading that says:

MILES JOGGED IN SIX MONTHS ARE

Your miles for each month are: 182, 178, 174, 170, 187, 183

Modify the program from question one to include the computation of
average miles jogged per month and a heading that says:

AVERAGE MILES JOGGED PER MONTH IS

Leave a blank line between headings.

Write a program to convert Fahrenheit temperatures to Celsius and
print the results. The Fahrenheit temperature readings are: 76, 88, and 96.
The formula C = (F - 32)*5/9.

Which of the following are valid numeric-variable names? For
those that are not valid, what is wrong with them?

A. R E. A2

B. R1 F. AA

C. 9 G. M52

D. 9L H. A$

5. For the following expressions write
expression.

the BASIC statements to solve the

3-17

1.

2.

3.

CHAPTER 3

EXERCISE ANSWERS

10 LET M = 182 + 178 + 174 + 170 + 187 + 183

20 PRINT “MILES JOGGED IN SIX MONTHS ARE ”;M

30 END

RUN

MILES JOGGED IN SIX MONTHS ARE 1074

10 LET M = 182 + 178 + 174 + 170 + 187 + 183

20 LET A = M/6

30 PRINT “MILES JOGGED IN SIX MONTHS ARE ”;M

40 PRINT

50 PRINT “AVERAGE MILES JOGGED PER MONTH IS ”;A

60 END

RUN

MILES JOGGED IN SIX MONTHS ARE 1074

AVERAGE MILES JOGGED PER MONTH IS 179

10 LET F = 76

20 LET F1 = 88

30 LET F2 = 96

40 PRINT (F – 32)*5/9,(F1 – 32)*5/9,(F2 – 32)*5/9

5 0 E N D

RUN

24.44 31.11 35.55

3-18

Chapter 3—SOLVING SIMPLE PROBLEMS WITH BASIC

4. valid numeric-variable names

A,B,E

invalid numeric-variable names

C. must be alphabetic

D. first character must be alphabetic

F. second character must be numeric

G. variable name can only be two characters

H. valid only for string-variables

5. A. LET A = (X + Y)/Z

B. LET B = X**2/Y**2

C. LET C = (X + Y)**2/Z

D. LET D = (X**2/(Y + Z))**2

3-19

	ERRATA #1
	CONTENTS
	CHAPTERS

	CHAPTER 1
	CHAPTER 2
	CHAPTER 3
	CHAPTER 4
	CHAPTER 5
	CHAPTER 6
	CHAPTER 7

	PAGES

	PAGE 1-1
	PAGE 1-3
	PAGE 1-4
	PAGE 1-5
	PAGE 1-6
	PAGE 1-7
	PAGE 1-8
	PAGE 1-9
	PAGE 1-10
	PAGE 1-11
	PAGE 1-12
	PAGE 1-13
	PAGE 1-14
	PAGE 1-15
	PAGE 1-16
	PAGE 1-19
	PAGE 2-1
	PAGE 2-2
	PAGE 2-3
	PAGE 2-4
	PAGE 2-5
	PAGE 2-6
	PAGE 2-7
	PAGE 2-8
	PAGE 2-11
	PAGE 2-12
	PAGE 2-14
	PAGE 3-1
	PAGE 3-2
	PAGE 3-5
	PAGE 3-7
	PAGE 3-8
	PAGE 3-10
	PAGE 3-11
	PAGE 3-12
	PAGE 3-13
	PAGE 3-14
	PAGE 3-15
	PAGE 3-19
	PAGE 4-1
	PAGE 4-3
	PAGE 4-4
	PAGE 4-6
	PAGE 4-7
	PAGE 4-8
	PAGE 4-9
	PAGE 4-13
	PAGE 4-14
	PAGE 4-17
	PAGE 4-21
	PAGE 5-1
	PAGE 5-2
	PAGE 5-3
	PAGE 5-4
	PAGE 5-5
	PAGE 5-6
	PAGE 5-7
	PAGE 5-8
	PAGE 5-9
	PAGE 5-11
	PAGE 5-12
	PAGE 5-13
	PAGE 5-14
	PAGE 5-16
	PAGE 5-24
	PAGE 6-1
	PAGE 6-4
	PAGE 6-5
	PAGE 6-7
	PAGE 6-14
	PAGE 7-1
	PAGE 7-2
	PAGE 7-3
	PAGE 7-4
	PAGE 7-5
	PAGE 7-6
	PAGE 7-7
	PAGE 7-13
	PAGE AI-1
	PAGE AI-2
	PAGE AII-1
	PAGE AII-2
	PAGE AIII-1
	PAGE AIII-2

	FIGURES

	FIGURE 1-1
	FIGURE 1-2
	FIGURE 1-3
	FIGURE 1-4
	FIGURE 1-5
	FIGURE 1-6
	FIGURE 4-1
	FIGURE 4-2
	FIGURE 5-1
	FIGURE 7-1
	FIGURE 7-2

	TABLES

	TABLE 2-1
	TABLE 2-2
	TABLE 2-3
	TABLE 2-4
	TABLE 3-1

	APPENDIX

	APPENDIX I
	APPENDIX II

	INDEX
	NRTC
	ASSIGNMENT 1
	ASSIGNMENT 2

